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Abstract. The Linear Scaling 3 dimensional fragment (LS3DF) method is an O(N) ab initio 
electronic structure method for large scale nano material simulations. The main idea of this 
approach is divide-and-conquer, and the heart of this method is the novel patching scheme that 
effectively cancels out the artificial boundary effect, which exists in all divide-and-conquer 
schemes. This method has made ab intio simulations of the thousands-atom nano systems 
feasible in a couple of hours, while pertaining essentially the same accuracy as the direct 
calculation methods. The LS3DF method has won the Gordon Bell Prize in SC 2008 for its 
algorithmic achievement. The LS3DF code has reached 442 TFlops running on 147,456 
processors on the Cray XT5 (Jaguar) at NCCS, and has been run on 163,840 processors on the 
Blue Gene/P (Intrepid) at ALCF, and has been applied to a system containing 36,000 atoms. In 
this paper, we will present the recent parallel performance results of this code, and will apply 
the method to the asymmetric CdSe/CdS core/shell nanorods, which have potential 
applications in electronic devices and solar cells. 

1.  Introduction 
Nano structures have wide applications in the biological imaging, light emitting diodes, solar cells, 
and other electronic devices. The sizes of the nano structures are so small that they have very different 
electronic and optical properties, which have a strong dependence on the sizes of the nano structures 
(quantum confinement effect), from those of bulk materials. Nevertheless, to study the properties of 
nano structures, one needs do ab initio calculations on the systems containing 1,000 to 100,000 atoms, 
which are too large for the direct ab intio methods to simulate. Despite the increasing availability of 
the computer processors, the direct methods have been applied to systems with one or two thousand 
atoms at most [1]. This is because even the simplest ab initio methods - the density functional theory 
(DFT) methods under the local density approximation (LDA), are computationally expensive, scaling 
as O(N3), where N is the size of the system. In addition, due to the communication bottleneck the 
parallelization of the direct LDA methods might have a limit in the order of 10,000 processors [1]. In 
reality, the most widely used direct LDA code, VASP, is difficult to scale to thousands of processors. 
Therefore, both the computational costs and the limit on parallelization call for a change in the direct 
O(N3) algorithm. The O(N) methods are required to simulate nano structures. Over the past decade, 



 
 
 
 
 
 

many O(N) methods have been developed [2]. These approaches can be classified to three main 
categories, the local orbital methods [3], the truncated D-matrix methods [4], and the divide and 
conquer methods [5]. While these methods have been able to successfully cut down the computational 
cost and have been applied to many larger systems, there exist some fundamental technical issues that 
are difficult to overcome. For example, in the commonly used local orbital methods, there exist 
extraneous local minima in the total energy functional, which make the total energy minimization 
difficult (convergence problem). This is due to constraining the wave functions on the local orbital 
manifold. Moreover, the overlap between neighbouring local orbitals has made these methods difficult 
to scale to the large number of processors. Some technical issues in the truncated density matrix 
methods (widely used in quantum chemistry) and the existing divide and conquer methods have been 
discussed in more detail in Ref. [7]. As a summary about the previous O(N) methods, on top of some 
fundamental technical issues, the main challenge in these methods is to scale the codes to tens of 
thousands of computer processors while preserving the ab intio accuracy.  

Recently we have developed a new O(N) method, the linearly scaling 3 dimensional fragment 
(LS3DF) method [6,7]. It is a divide and conquer approach. It scales to tens of thousands of computer 
processors, and yields essentially the same results as the direct LDA methods. The LS3DF method has 
won the Gordon Bell Prize in SC 2008 for its algorithmic achievement [8]. In this paper, we will 
present the LS3DF method, focusing on its recent parallel performance results. Then we will apply the 
LS3DF method to study the electronic structures of the asymmetric CdSe/CdS core/shell nanorods, 
which have potential applications in the solar energy conversions.  

2.  The LS3DF method 
The LS3DF method is based on the near-
sightedness of quantum mechanical effects. The 
total energy of a system can be split into the 
classical electrostatic energy and the quantum 
mechanical energy (kinetic energy and 
exchange correlation energy). The electrostatic 
interaction is long-ranged, therefore the 
electrostatic energy must be calculated by 
globally solving the Poission equation.  But the 
quantum mechanical effect is short-ranged, 
therefore it can be solved locally, and then the 
quantum mechanical energy for the whole 
system can be obtained by combining the 
locally calculated quantum energies. In our 
LS3DF method, we divide a large system into 
small pieces (fragments), and independently 
calculate each fragment, then patch them 
together to obtain the total energy and the total 
charge density for the whole system. The heart 
of the LS3DF method is a novel patching 
scheme that effectively cancels out the artificial 
boundary effect. Figure 1 and 2 illustrate our 
division and patching scheme using a 2D 
example for simplicity. In Figure 1 a periodic 
super cell is divided into 4x4 pieces. At each 
grid point (i,j), we introduce 4 fragments (along 
the right-upper direction) with different sizes, 
1x1, 2x1, 1x2 and 2x2. And then all fragments at all fragment grid point (i,j) (i=1,…,4; j=1,…,4) will 
be calculated independently using a direct LDA method, eg., PEtot [9],  a planewave pseudo potential 

Fig. 1. A schematic view of the division of a system 
into small fragments. This 2D periodic super cell is 
divided into 4x4 fragment grids. At each fragment grid 
point (i,j), 4 fragments with different sizes are 
introduced. Where the red, green, yellow, and blue 
rectangles represent the fragments of size 1x1, 2x1, 
1x2 and 2x2, respectively.    
 

 

Fig. 2. The schematic view of the fragment patching  
scheme in the LS3DF method for 2D systems. Here 
the yellow (1x2) and the green (2x1) fragments are 
negative fragments, and blue (2x2) and red (1x1) are 
positive fragments. 
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LDA code. Then, the fragments will be summed up according to the patching scheme illustrated in 
Figure 2. Where the 1x1 (red) and 2x2 (blue) fragments are positive fragments, and the other two, the 
1x2 (yellow) and the 2x1 (green) are negative fragments.  

We can demonstrate how the patching scheme recovers a system.  Let’s consider the area covered 
by the red square in Figure 1. For convenience, we denote the fragment 1x1 introduced at the fragment 
grid point (i,j) as F11(i,j). By counting how many positive and negative fragments cover this area, one 
can easily see whether this area is described properly after all the fragments are added up.  This area is 
covered by 5 positive fragments, they are F11(i,j), F22(i-1,j-1), F22(i,j-1), F22(i,j) and F22(i-1,j). And this 
area is also covered by four negative fragments, which are F21(i,j), F21(i-1,j), F12(i,j) and F12(i,j-1). 
When these fragments are summed up using the patching scheme in Figure 2, the red square area will 
be covered only once after 4 positive and 4 negative fragments cancel out in pairs. We can also show 
the artificial boundary will be removed in this patching scheme. Let’s consider the left boundary of the 
red square (edge AB). We can define a direction (outward) for this boundary as shown with a left 
arrow in Figure 1. We can count how many fragments go through this boundary. They are three 
positive fragments, F11(i,j), F22(i,j), and F22(i,j-1) and three negative fragments, F12(i,j), F12(i,j-1), and 
F21(i,j). When these six fragments are summed up, the edges from the three negative fragments will 
cancel out the edges from the other three positive fragments. As a result the edge (AB, outward) will 
disappear after the fragment summation.  Similarly we can see the artificial corners (eg., the corner 
BAC, outward direction) will cancel out.  

The patching scheme for 2D systems can be generalized to 3D systems straightforwardly. In 3D 
cases, at each fragment grid point (i,j,k), eight fragments (along the right-upper direction) with 
different sizes will be introduced, they are four positive fragments, 2x2x2, 2x1x1, 1x2x1 and 1x1x2, 
and four negative fragments, 2x2x1, 2x1x2, 1x2x2, and 1x1x1. The patching scheme is 

 
 

 
The presumption of this boundary effect cancellation is that the fragments that share a given 

boundary have very similar charge densities near that boundary. Our tests have shown that this 
presumption always holds as long as the smallest fragment (1x1x1) is not too small. When a typical 8-
atom unit cell is chosen as the 1x1x1 fragments, the errors of the total energy, charge density, atomic 
force and the dipole moment are well under the common stopping criteria in the direct LDA methods. 
Thus the LS3DF method gives essentially the same results as the direct methods. In contrast to the 
convergence issues that is common in other O(N) methods, the selfconsistent (SC) iterations in LS3DF 
converges at a comparable rate as the direct methods. For a system containing a few thousands atoms, 

Total =

€ 

{F 222 + F 211+ F121+ F112
i, j ,k
∑ − F 221− F 212 − F122 − F111} 

  
Fig. 3. Weak scaling floating point operation rates (a) and the computational efficiency (b)  of the LS3DF 
method on different machines. The systems used were ZnTe1-xOx alloy (x=8%) with various number of 
atoms. The flops were measured for one SCF iteration step. The floating point operations were measured in 
the double precision, using the profiling tool Craypat 4.1. 
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the total energy typically converges to 10-6 a.u. within 50-60 iterations. The LS3DF method 
outperforms the direct LDA methods when the system contains more than 550 atoms. For nano 
structures with 10,000 atoms, the LS3DF would be faster by 3 orders of magnitudes, even presuming 
the direct LDA methods can scale up to thousands of processors. For more details about the LS3DF 
method, please refer to Ref. [6,7].  

One of the great advantages of the LS3DF method is its excellent parallel scaling. We have run our 
code on the Cray XT4 (Franklin) at NERSC, the Cray XT5 (Jaguar) at NCCS, and the Blue Gene/P 
(Intrepid) at ALCF.  Figure 3 shows the weak scaling results on these three machines. The LS3DF 
code has shown a linear scaling up to the maximum available processor cores on all three 
supercomputers. It has reached 135 Tflops on 36,864 cores on Franklin at 40% efficiency; 224 Tflops 
on 163,840 cores on Intrepid at 40% efficiency; 442 Tflops on 147,456 cores on Jaguar at 33% 
efficiency. For more previous performance results of the LS3DF method, see Ref. [9].  

3.  Electronic structure calculations for asymmetric CdSe/CdS core/shell nanorods 
With the advance of the synthetic methods, more and more different shapes of nano structures have 
been synthesized in the labs. Recently Carbone and his colleagues have synthesized asymmetric 
core/shell structures, using newly developed seed growth method [10]. In the asymmetric core/shell 
nanorods, a CdSe core is embedded in one end of the cylindrical CdS shells. By changing the sizes of 
the core and the shell (both diameter and length), one can manipulate the electronic structures inside 
the nanorods. Hence these nano structures appear to be particularly interesting to solar cell 
applications. In addition, these asymmetric 
core/shell structures provide a system on 
which one can study the quantum 
confinement effect, the band alignment, the 
strain (due to the core/shell lattice constant 
mismatch), and the surface effects.  

We have applied the LS3DF method to 
the asymmetric CdSe/CdS core/shell 
nanorods with the Cd terminated and the 
Cd+S terminated surfaces, respectively, and 
also to their counterparts, the pure CdS 
nanorods, to study how the core and the 
surface affect the electronic structures 
inside these nanorods. We have calculated 
the valence band maximum (VBM, hole) 
and the conduction band minimum (CBM, 
electron) states and the band gaps (Table 
1), utilizing the folded spectrum method 
[11], and have also calculated the dipole 
moments (Table 2) of these nanorods. One 
can see that in the nanorods with the Cd 
terminated surface, the introduction of the 
CdSe core results in a significant change in 
the band gaps (0.24 eV) and dipole moment 
(-9.65 a.u.), while in the nanorods with the 
Cd+S terminated surfaces, the role of the 
CdSe core seems to be suppressed by the 
surface effect, and the band gap and the dipole moment changes are small.  Figure 4 shows the charge 
density isosurface of the hole and the electron states of the four nanorods. One can see that in the 
nanorods with the Cd terminated surface the introduction of the CdSe core significantly changes the 
localization of the hole states, while in the nanorods with the Cd+S terminated surface, the hole state 

 Cd termin. 
(eV) 

Cd+S 
termin. (eV) 

Band gap 
change (eV) 

Pure CdS 
nanorods 

2.655 2.498 -0.156 

CdSe/CdS 
Core/shell 

2.415 2.403 -0.011 

Band gap 
change (eV) 

-0.240 -0.095  

 

Table 1. The calculated band gaps of the four nanorods. 
The band gap changes due to the different surfaces (column 
4) and the CdSe core (row 4) are also shown in the table. 

 Cd termin. 
(a.u.) 

Cd+S termin. 
(a.u.) 

Dipole mom. 
change (a.u.) 

Pure CdS 
nanorods 

-15.623 -28.415 -12.792 

CdSe/CdS 
core/shell 

-25.277 -28.108 -2.830 

Dipole mom. 
change (a.u.) 

-9.654 0.307  

 

Table 2. The calculated dipole moments along the c-axis of 
the four CdS nanorods (the components of the dipole 
moments in the other two directions are small, not shown 
here). The dipole moment changes due to the different 
surfaces (column 4), and the CdSe cores  (row 4) are also 
shown in the table. 
 



 
 
 
 
 
 

localization seems not be 
affected by the presence of 
the CdSe core, indicating 
the Cd+S terminated surface 
has the dominant effects to 
the hole localizations. For 
more details, see Ref. [12].  

 

4.  Conclusion 
We have presented the 
LS3DF method for ab initio 
electronic structure 
calculations. We have 
described how the method 
works without going into 
the implementation details, 
and have presented the 
parallel scaling, and have 
summarized the accuracy 
and the SCF convergence 
rate. We have applied this 
method to the asymmetric 
CdSe/CdS core/shell 
nanorods, to study the 
electronic structures inside 
these nano structures. As a summary, the LS3DF method is an O(N) ab initio electronic structure code 
; it scales linearly to hundreds of thousands of computer processors; it yields essentially the same 
results as the direct LDA methods; it can solve a nano system with thousands of atoms selfconsistently 
in a couple of hours. We expect it will find wide applications in nanostructure calculations.  
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Figure 17. Isosurface of the charge densities of the conduction band 
minimum (CBM, green) and the valance band maximum (VBM, red) states 
of the four CdS nanorods with/without CdSe core. Where (a) and (b) are for 
the pure CdS nanorods with the Cd terminated and the Cd+S terminated 
surfaces, while (c) and (d) are for the corresponding CdSe/CdS core/shell 
nanorods, respectively. The isovalue larger than 0.001 e/bhor3 was shown 
for both VBM and CBM states. The blue dashed circle shows the CdSe core 
area. These nanorods are constructed as a wurzite structure, and have 2.8 nm 
in diameter, and 8.4 nm in length (c-axis). The diameter of the CdSe core is 
2.1 nm. There are 3063 and 2298 atoms in the nanorods with the Cd 
terminated and the Cd+S terminated surfaces, respectively. Where the 
magenta, yellow, and blue dots represent the Cd, S, and Se atoms, 
respectively, and the white dots represent pseudo H atoms which passivate 
the surface dangling bonds.  
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